E-mail this article to
yourself or a friend.
Enter address:





home

Another agriculture is possible

by Lim Li Ching
The Institute for Science in Society

(Thursday, Jan. 2, 2003 -- CropChoice guest commentary) -- Ethiopia has been hit by more droughts and is facing famine in parts of the country. Nevertheless, the long-term solutions to the challenge of ensuring food security for all lie with Ethiopian farmers themselves, who are practicing many forms of sustainable agriculture.

First stop Ejere. Not far from the Ethiopian capital Addis Ababa, the farming community of Ejere has participated in a project with the Institute of Biodiversity Conservation and Research (IBCR), to reclaim their own varieties of local wheat, teff (an Ethiopian staple cereal) and barley. This is particularly significant, given that in the 1970s local varieties were increasingly displaced by so-called modern high-yielding varieties (HYVs), including bread wheat, which farmers did not normally grow. But the "high-yielding" varieties actually resulted in lower yields and other problems.

Fortunately, before the HYVs totally replaced farmers' varieties, the IBCR (then called the Plant Genetic Resources Centre of Ethiopia - PGRC/E) had made collections of the farmers' varieties from the area. In the 1980s, a senior durum wheat plant breeder found out about the farmers' problems with the HYVs and decided with Dr Melaku Worede, Ethiopian conservationist and plant geneticist, to help the farmers reclaim their own varieties from the PGRC/E.

Samples were obtained of all the local durum wheat and teff varieties, and an area to grow them with the farmers was negotiated with the local school. This helped to multiply the seed, and also involved the farmers in selecting the varieties they wanted to bring back to their fields. The farmers also developed their own farmers' elite varieties.

As IBCR staff Tekalgne Abebe explained, the objective of this in-situ crop conservation project is to ensure a sustainable supply of seed and to minimise the dependency of farmers on high cost inputs like fertilisers and "improved" varieties. The Ejere project is also linked to other in-situ conservation sites nationally and complimented by ex-situ conservation of crop seed samples kept in cold storage.

It has been such a success that most of the farmers of the area are growing their own varieties with little fertiliser. For example, the farmers have selected and developed 26 varieties of durum wheat, which is indigenous to Ethiopia. These varieties have been selected based on farmers' knowledge and innovation, and based on criteria they consider important, such as colour, yield and resistance.

That the conservation and use of farmers' varieties has positive impacts is evident in the kaleidoscope of colours in the area as more pulses are grown, their dark green patches interspersed among the golden ones of teff and wheat. The reason why the community can afford to grow more pulses is because the farmers' varieties of cereals are higher yielding, allowing the farmers to devote extra time and space to growing pulses. Consequently they also have a more balanced diet, and the pulses help improve soil structure and fix nitrogen. In contrast, other communities who rely on modern varieties face poorer yields, forcing them to concentrate on planting only cereals to make up for the yield deficits, leaving little resources for other important crops such as pulses.

I was in Ethiopia for an African Biodiversity Network workshop on "Globalisation and Biodiversity." The stimulating sessions, the chance to meet people from different parts of Africa, and the field visits, such as the trip to Ejere, all served to bring home an important message for me - that most debates on agriculture is devoid of context, as they leave out the people. Sustainable agriculture is inextricably linked to the knowledge, lives and practices of women and men living in their communities.

That is in striking contrast to the industrial monoculture model that's still being promoted by large agribusiness and some governments, based on mechanization and high chemical inputs, which sacrifices long-term ecological health (particularly biodiversity, soil and water quality) for short-term productivity gains. Its over-reliance on pesticides, herbicides and fertilisers has only increased the risks of crop disease and harm to human health. Genetically engineered crops, now thrown into the package, are threatening further health and environmental hazards.

Agriculture that depends on high-input in agrochemicals and in patented genetic-engineered traits, wrests control over food production and food security out of the hands of farming communities, and into the hands of corporations. That model must be rejected.

Small farmers are the majority of farmers in the world, constituting 70% of the world's population. The Small Farmer Convergence at the World Summit on Sustainable Development gave voice to small-scale farmers from Africa, Latin America, Asia, Canada and Europe. It stressed that small farmers have evolved effective systems of crop development, seed exchange and multiplication, which is key to food sovereignty. Small farmers continue to oppose the patenting of seeds, as it is a direct threat to, and violation of, the rights of farmers to preserve, use and exchange their own agricultural resources.

The farmers were in no doubt concerning GMOs: "We say NO to genetically modified foods. We do not need genetically modified seeds." They asserted the superiority of their indigenous seeds and noted that GMOs have not been independently proven safe for humans and the environment. They called on governments to ban or place a moratorium on GM seeds.

The small farmers also criticized the large transnational corporations for claiming that GM seeds will bring food security, "We small scale farmers farm for people and not for industry!"

Indeed, in the Butajira area of Ethiopia, the focus of our next field visit, farmers are demonstrating that it is possible to farm intensively and sustainably to provide enough food to meet high population needs. How do they do this? By using indigenous crops selected for resistance to diseases, drought tolerance and many other desirable features, by intercropping and by integrating livestock management.

The basic food of the area is enset, or false banana (more on this amazing plant later). This is intercropped with sorghum, selected in this area for its drought-resistance, insect-resistance and height. The tall sorghum plants provide stems that are routinely used for construction and fuel, and also as animal feed.

And in the small piece of land farmed by a very hospitable farmer Aman Ibrahim and his family, we saw not only teff, enset and sorghum, but also arabica coffee, medicinal plants, papaya, vegetables and spices, grown on every available space. The goats, sheep and cattle provide manure, milk and milk products and traction for ploughing. The animals may also be sold to provide cash in times of need.

Our next stop was Worabe, a largely enset producing area nestled in the highlands, where the terrain was spectacular. From where we stood we could see the escarpment of the African Rift Valley.

It seems fitting that so magnificent a landscape should be complemented by a complex, sustainable and indigenous agricultural system that ensures food security. Enset is a very drought resistant crop that has multiple uses. Farmers say, "Enset is our food, our clothes, our beds, our houses, our cattle-feed, our plates".

Bedru Sefa, one of the farmers in the area, showed us the different steps in the enset agricultural system. First, he demonstrated how enset is propagated. He dug out the underground stem, the corm, a bundle of leaf sheaths. The farmer would cut out the centre or meristem, the active growing part of the plant. Because of the dominance of the main meristem, lateral buds do not usually develop. But once this is removed, and covered with soil, the lateral buds will grow and form suckers around the periphery of the mother corm. Up to 400 suckers can be produced in this way from just one mother plant.

The suckers are left to grow in a cluster in a small space, to be transplanted after a year to wider spaces. In so doing, farmers ensure that what space available is maximally used, and only when necessary.

Enset can be harvested at any time aged between about 2-15 years. At what age it is harvested depends on what the household needs are and what use it is put to. The flexibility in harvesting age means that farmers can stagger the timing, so as to ensure that there is enset harvested every season, making food available all the time.

We were also shown how enset is processed. Women carry out most of the enset processing, and it is very labour-intensive work. A woman "decorticates" the leaf sheaths by holding them against an inclined wooden plank, sometimes with her leg, while using a bamboo scraper to remove the fleshy pulp of the sheath. What remains are very strong fibres, which are used to make rope, and are woven for different purposes.

The women also grate the corm itself and mix this with the leaf sheath pulp. This can be boiled immediately to produce amicho, a delicious food that can be mixed with spices and other flavourings. The mixture is also fermented in pits lined with enset leaves, breaking down the fibres to make cooking and eating easier.

The fermented material is known as kocho, and is baked to form a type of flat bread before being eaten. Fermented kocho is usually stored in the pits for a minimum of a month, but may be stored for longer, up to several years. Such mature kocho is likened to good wine! Because kocho can be stored for long periods, there is always food available.

While there remains the daunting challenge of ensuring food security and food availability for all in Ethiopia, given that there are areas in the country where recent droughts have hit badly, these farmers are showing that there are alternatives that work. In the terrible droughts of the 1980s, farmers did suffer, but for many this was the first time they had suffered in this way, because they had been persuaded to focus on growing cereals and neglected enset. Fortunately, farmers are now going back to this system of ensuring their food security, by having the flexibility to choose what and how they grow their crops, and reviving the enset agricultural system.

At a global level, despite adequate food production, many still go hungry because increased food supply does not automatically mean increased food security for all. What's important is who produces the food, who has access to technology and knowledge to produce it, and who has purchasing power to acquire it. Sustainable agriculture must thus allow farmers to improve local food production with low-cost, with readily available technologies and inputs, without causing environmental damage.

Ethiopian farmers are showing the way by conserving and using farmers' varieties, using their innovation and knowledge, and really putting sustainable agriculture into practice.

*Many thanks to Sue Edwards from the Institute for Sustainable Development, Ethiopia, for her helpful comments.

The author can be reached at ching@i-sis.org.uk. To learn more about the Institute for Science in Society, go to http://www.i-sis.org.uk